DU Data scientist

Accéder aux sections de la fiche

Call to actions

Contact Formation Continue:
Sophie FOURNIER, +33 4 73 40 70 05,
Sophie.FOURNIER@uca.fr 

Contact Formation Initiale: Dominique BRUGIERE, +33 4 73 40 70 04,
Dominique.BRUGIERE@uca.fr

Détails

Présentation

Le Diplôme Universitaire Data Scientist propose depuis son ouverture en Septembre 2018 des enseignements dans le domaine des Data Sciences à des professionnels et à des étudiants. La formation dure un an et repose sur 8 Unités d'Enseignement (UE) complémentaires:
  • UE 1: Analyse de données avec Python: 25h (13-17 Septembre 2021)
  • UE 2: Statistiques avancées: 20h (11-15 Octobre 2021)
  • UE 3: Machine Learning: 20h (13-17 Décembre 2021)
  • UE 4: Fouille de données et Big data: 20h (15-19 Novembre 2021)
  • UE 5: Data engineering: 30h (21-25 Mars 2022)
  • UE 6: Outils statistiques - logiciel R: 20h (25-29 Avril 2022)
  • UE 7: Séries temporelles: 20h (16-20 Mai 2022)
  • UE 8: Deep Learning: 20h (31 Janvier - 4 Février 2022)
Chaque UE laisse une place significative aux exercices et sessions pratiques sur machine réalisés à l’aide de l’environnement interactif open-source Jupyter Notebook et du service web de gestion et d’hébergement de logiciels github.
La formation a lieu à l'UCA, campus des Cézeaux, Aubière, sauf pour L’UE 5 « Data Engineering » qui se déroule au Centre de Calcul du CNRS, à Villeurbanne. Les UE de la formation se déroulent chacune sur une semaine au cours de l'année. Les UE 1-4 ont lieu de Septembre à Janvier, les UE 5-8 ont lieu de Janvier à Mai.  Le diplôme universitaire est délivré si au moins 5 UE (choisies parmi les 8) sont validées. Les UE forment un ensemble auto-cohérent et peuvent aussi être proposées individuellement à la Formation Continue.
Les enseignements sont dispensés par des chercheurs et enseignants-chercheurs du Laboratoire de Physique de Clermont (LPC), du Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS), du Laboratoire de Mathématiques (LMBP) et de l'Institut Pascal (IP). La formation s'appuie sur les recherches conduites dans ces laboratoires, en particulier elle bénéficie de l’implication de ses intervenants dans de nombreuses expériences scientifiques (certaines de dimension internationale comme le CERN) et de leur expertise dans le domaine des Data Science: analyse de grande masses de données, traitement d’image, robotique, machine learning, méthodes et algorithmes statistiques, informatique, calcul et intelligence artificielle.

Enjeux

Le terme Data Science recouvre un ensemble de connaissances et de compétences permettant d’exploiter de (grandes) quantités de données à l’aide d’outils d’analyse statistiques modernes. L’ensemble des méthodes employées, connues parfois sous les dénominations d’intelligence artificielle, fouille de données ou bien encore « big data » vise à extraire de systèmes complexes des informations permettant, entre autres, la visualisation, la classification et la modélisation des données. Des métiers spécifiques sont apparus au cours des dernières années autour de ces thématiques, et la demande d’experts en traitement de données, les « Data Scientists », est en pleine croissance dans de nombreux domaines scientifiques et socio-économiques.Les compétences globales proposées par la formation sont les suivantes : maîtriser des concepts statistiques avancés, utiliser des techniques modernes de calcul et de traitement des données, pratiquer des méthodes d’analyse prédictive et d’optimisation, implémenter des algorithmes d’apprentissage supervisé et non supervisé.L’ensemble de ces compétences est mis en œuvre dans les champs disciplinaires des chercheurs et enseignants-chercheurs qui portent cette formation.

Spécificités

Le Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (CC-IN2P3 à Villeurbanne, https://cc.in2p3.fr/) est un partenaire sur lequel s’adosse la formation. Ce grand centre de calcul du CNRS dispose d’une expertise et d’un savoir-faire technologique de renommée internationale, en particulier dans le domaine du calcul intensif sur grille informatique (grid computing). L'UE « Data engineering » (UE5) a été conçue en partenariat avec les ingénieurs du CC-IN2P3 et se déroule dans les locaux du centre.

Lieux

Aubière

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, Villeurbanne.

Responsable(s) de la formation

DONINI Julien
Email: Julien.DONINI@uca.fr

Admission

Pré-requis

Formation(s) requise(s)

Des connaissances de base en informatique (notions de programmation) et mathématiques (notions de probabilités et statistiques) sont requises pour profiter au mieux des enseignements avancés proposés. Les enseignements sont donnés en anglais et un bonne maîtrise de la langue anglaise est requise (niveau B2).

Conditions d'admission / Modalités de sélection

L’admission, pour la Formation Initiale (FI) et Continue (FC), repose sur un dossier de candidature : CV, lettre de motivation, relevé de notes des années précédentes pour la FI, descriptif des compétences en informatique et mathématiques pour la FC. Des entretiens individuels pourront également être mis en place si nécessaire.Pour les étudiants inscrits en formation initiale un niveau Bac+4 dans un cursus scientifique est requis.

Dossier de candidature: https://www.uca.fr/medias/fichier/dossier-candidature-du-ds-2021-2022_1612513013573-docx

Programme

Les informations ci-dessous sont données à titre indicatif et peuvent faire l'objet de mises à jour.
 / 1

Le DU ne comporte pas de stage. Néanmoins les étudiants en formation initiale n’étant pas inscrits en Master doivent réaliser un projet tutoré avec immersion en entreprise d’une durée de 50h. Les projets seront suivis par l’équipe enseignante du DU.

Et après ?

Compétences visées

Activités visées / compétences attestées

Compétences acquises pendant la formation:
Maîtriser des concepts statistiques avancés
Programmer avec des logiciels d'analyse statistique (R, Python)
Appliquer des méthodes d’analyse prédictive
Construire des modèles statistiques
Appliquer des méthodes de classification et de régression
Utiliser des librairies de Machine Learning (scikit-learn, Pytorch)
Implémenter des algorithmes d’apprentissage supervisé (réseaux de neurones)
Comprendre les problématiques du "Big Data"
Utiliser des techniques de fouille de données
Connaître les problématiques liées au calcul
Savoir choisir le stockage le plus adapté (cloud, bases de données SQL et NoSQL)
Utiliser un Notebook de type Jupyter pour mener une analyse de données

Insertion professionnelle

Le Diplôme Universitaire offre des débouchés variés dans plusieurs secteurs, tels que :
Métiers de Data Scientist (data analyst, data miner,...)
Chargé d’études statistiques
Chargé d’études prospectives et d’optimisation
Analyste en intelligence socio-économique
Responsable gestion et analyse de données
Métiers de la Recherche

Inscriptions

Coût de la formation

Tarif pour l'ensemble de la formation: plein tarif 4375 €, tarif réduit (étudiant UCA) 450 €.

Modalités d'inscription